

Kurzbeschreibung

Messautomat Postprozess

Messaufgabe

• Messung von Durchmessern, Längen, Lauftoleranzen (Rundläufe)

Methode


- taktil
- · dynamisch

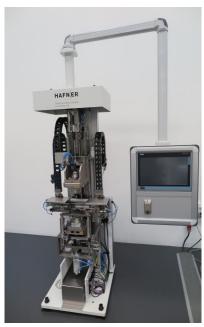
Toleranzen

Ø-Toleranz = 11µm

- · Be-/Entladung: mit integriertem Handling
- Umrüstung: manuell, in 5 Min.
- Werkstücktyperkennung
- · Ausschleusung der n.i.O-Werkstücke

Kurzbeschreibung

Messautomat Postprozess


Messaufgabe

- Messung von Durchmessern, Längen, Form-und Lagetoleranzen, Lauftoleranzen (Rundläufe, Planläufe)
- SAE Verzahnungsmessung (Zweikugelmaß und Rundlauf)

Methode

- taktil
- dynamisch

- Taktzeit: 3-5 Sekunden pro Messebene oder Temperaturaufnahme
- Umrüstung: umrüstfrei
- Kalibrierung: automatisch
- · Steuerung: Fremdsteuerung
- · Zusätzliche Monitor- und Bedieneinheit
- Inklusive Temperaturkompensation

Kurzbeschreibung

Messautomat Postprozess

Messaufgabe

• Messung von Durchmessern, Längen, Lauftoleranzen (Rundläufe)

Methode

- taktil
- · dynamisch

Toleranzen

Ø-Toleranz = 11µm

- · Be-/Entladung: mit kundenseitigem Handling
- Umrüstung: umrüstfrei
- flexible Längspositionierung der Messstellen

Kurzbeschreibung

Messautomat zur 100%-Kontrolle

Messaufgabe

· Messung von Längen

Methode

- taktil
- statisch

- Umrüstung: manuell, in 1 Min.
- Werkstückmarkierung mittels Laser
- Schnittstelle zu vorgelagertem Radsatztester zur Ermittlung der Achsabstände Antriebskegelrad zu Tellerrad
- Berechnung des Montagemaßes aus Antriebskegelrad und Tellerrad

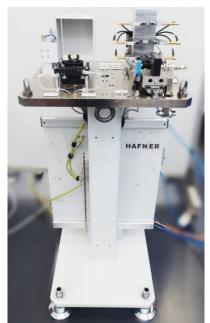
Kurzbeschreibung

Messautomat Postprozess

Messaufgabe

· Messung von Durchmesser

Methode


- taktil
- statisch

Toleranzen

• Ø-Toleranz < 11 μm

Besonderheiten

- Taktzeit: < 10 s
- Be/Entladung: mit kundenseitigem Handling
- Kalibrierung: automatisch
- Umrüstung: umrüstfrei
- · Steuerung: Fremdsteuerung

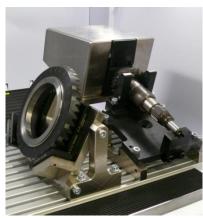
3367556/he

Mess- und Beschriftungsautomat Antriebskegelräder/Tellerräder

Kurzbeschreibung

- Messautomat zur 100%-Kontrolle
- Werkstückbeschriftung mit DMC-Code

Messaufgabe


· Messung von Längen

Methode

- taktil
- statisch

- Taktzeit: ca. 50 s
- Be-/Entladung: manuell
- Werkstückmarkierung DMC-Code mittels Laser
- Umrüstung manuell, < 5 min
- Schnittstelle zu vorgelagertem Radsatztester zur Ermittlung der Achsabstände Antriebskegelrad zu Tellerrad
- · Berechnung des Montagemaßes aus Antriebskegelrad und Tellerrad

Messautomat für Antriebswelle

Kurzbeschreibung

Messautomat zur 100%-Kontrolle

Messaufgabe

 Messung von Längen, Lauftoleranzen (Rundläufe), Härte (Auswertung attributiv: gehärtet/ungehärtet), Oberfläche (Auswertung attributiv: gestrahlt/ungestrahlt)

Methode

- taktil sowie berührungslos, magnet-induktiv (Härte) und optisch (Oberfläche)
- dynamisch

- Taktzeit: 16 s
- · Be-/Entladung: mit kundenseitigem Förderband
- Kalibrierung: automatisch
- Umrüstung: umrüstfrei
- · Steuerung: SPS-Steuerung
- Werkstücktyperkennung
- Mixbetrieb für 10 unterschiedliche Werkstücktypen

Messeinrichtung für Abtriebswelle

Kurzbeschreibung

Messeinrichtung zur Stichprobenkontrolle bzw. 100%-Kontrolle

Messaufgabe

Durchmesser, Längen, Teilung (Verzahnung), Mdk-Maß,
 Parallelitäten, Koaxialitäten, Lauftoleranzen (Rundläufe, Planläufe),
 Formtoleranzen (Zylinderform) mit Auswertung nach DIN

Methode

- taktil
- dynamisch

Toleranzen

Zylinderform 5µm

- Taktzeit: 30-80s, je nach Prüfplan
- Be-/Entladung sowie Kalibrierung: manuell
- Umrüstung: umrüstfrei für mehrere Werkstücke
- Steuerung: PC-Steuerung
- 4 unterschiedliche Messgeräte/Operationen vereint
- Flexibilität: zusätzliche Werkstücke (rotationssymmetrisch) frei programmierbar

3352847/eis

Kurzbeschreibung

Messautomat Postprozess

Messaufgabe

 Messung von Durchmessern, Längen, Temperatur/Temperaturkompensation

Methode

- taktil
- dynamisch

Toleranzen

• Wiederholbarkeit und Linearität < 1 μm

- Taktzeit: 3-4 s
- Be/Entladung: mit kundenseitigem Handling
- Kalibrierung: manuell
- Umrüstung: umrüstfrei für Werkstückspektrum
 - Länge bis ca. 650 mm
 - Durchmesser bis ca. 200mm
- Steuerung: Fremdsteuerung

Kurzbeschreibung

Messautomat Postprozess zur 100% Messung

Messaufgabe

 Messung von Durchmesser, Längen, Lauftoleranzen (Rundläufe), Richtungstoleranzen (Parallelitäten, Rechtwinkligkeiten)

Methode

- taktil
- statisch

Toleranzen

• Ø-Toleranz < 10 μm

Besonderheiten

- Taktzeit: Ø 4 s
- · Be/Entladung: mit kundenseitigem Portallader
- Kalibrierung: automatisch (integriert)
- · Umrüstung: umrüstfrei für verschiedene Werkstücktypen
 - Spitzenweite bis 900 mm
 - Werkstückdurchmesser bis 320 mm

3368753/he

Kurzbeschreibung

Messautomat Postprozess

Messaufgabe

 Messung von Durchmessern, Längen, Temperatur/Temperaturkompensation

Methode

- taktil
- statisch sowie dynamisch

Toleranzen

• Wiederholbarkeit und Linearität < 1 μm

- Be-/Entladung: auf F\u00f6rderband und Werkst\u00fccktr\u00e4ger (kundenseitig)
- Kalibrierung: automatisch
- · Steuerung: Fremdsteuerung
- Werkstückspektrum: Länge 100 – 650mm Durchmesser 10 – 150mm

Kurzbeschreibung

Messautomat Postprozess

Messaufgabe

- Messung von Durchmessern, Längen, Form und Lagen Temperatur/Temperaturkompensation
- Messung von SAE Verzahnungen, Lauf und Zweikugelmaß

Methode

- taktil
- statisch sowie dynamisch

Toleranzen

Wiederholbarkeit und Linearität < 1 µm

Besonderheiten

- Be-/Entladung: Zuführeinheit, rüstfrei, für schwere LKW Wellen
- Kalibrierung: automatisch
- · Steuerung: Fremdsteuerung
- Werkstückspektrum:
 Länge 100 650mm
 Durchmesser 10 150mm (Variante bis 250mm)

3350994/ol

Kurzbeschreibung

Messautomat Postprozess

Messaufgabe

· Messung von Durchmessern

Methode

- taktil
- statisch

Toleranzen

Ø-Toleranz ± 8 μm

- Taktzeit: < 10 s
- Be/Entladung: mit kundenseitigem Handling
- Kalibrierung: automatisch
- Umrüstung: umrüstfrei
- · Steuerung: Fremdsteuerung

Messautomat für Achswellenkegelrad

Kurzbeschreibung

Messautomat zur 100%-Kontrolle

Messaufgabe

 Messung von Durchmessern, Längen, Lauftoleranzen (Rundläufe, Planläufe)

Methode

- taktil
- · statisch

Toleranzen

Ø-Toleranz = 20 μm

- Taktzeit: 6 s
- Be-/Entladung: mit kundenseitigem Handling
- · Umrüstung: manuell
- umrüstbar auf ein großes Teilespektrum unterschiedlicher Typen (pinion & gear) und Größen
- · Steuerung: Fremdsteuerung

Kurzbeschreibung

Messautomat zur 100%-Kontrolle

Messaufgabe

 Messen von Durchmessern, Längen, Formtoleranzen (Rundheiten), Ortstoleranzen (Koaxialitäten), Lauftoleranzen (Planläufe)

Methode

- taktil
- statisch sowie dynamisch

Toleranzen

Ø-Toleranz < 11 μm

- Taktzeit: < 60 s
- · Be/Entladung: mit eigenem Handling vom Kundenband
- · Kalibrierung: manuell, auf Wunsch automatisierbar
- Umrüstung: manuell
- · Steuerung: SPS-Steuerung
- · Werkstückmarkierung mittels Tintenstrahldrucker
- Ausschleusung der n.i.O-Werkstücke

Kurzbeschreibung

· Postprozess Messautomat

Messaufgabe

- Messung von Durchmessern, Längen, Formtoleranzen, Richtungstoleranzen, Ortstoleranzen und Lauftoleranzen; Temperaturkompensation
- Bestimmung der Innenkugel und deren Position zu den Achsen

Methode

- taktil
- statisch / dynamisch

Toleranzen

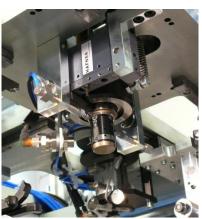
• u.a. Ebenheit Tellerrad-Flansch 0,02 mm

- Taktzeit: < 30 s (inkl. Austausch WST)
- Kalibrierung: automatisch
- Steuerung: SPS-Steuerung
- Be-/Entladung: mit kundenseitigem Handling

Kurzbeschreibung:

Messautomat zur 100%-Kontrolle

Messaufgabe


 Messung von Durchmessern, Längen, Richtungstoleranzen (Rechtwinkligkeiten), Ortstoleranzen (Positionen, Konzentrizitäten), Lauftoleranzen (Rundläufe, Planläufe)

Methode

- taktil
- statisch sowie dynamisch

- Be-/Entladung: mit kundenseitigem Handling
- Kalibrierung: manuell
- Umrüstung: manuell für zwei unterschiedliche Gehäusetypen
- · Steuerung: Fremdsteuerung
- Schmutzunempfindlichkeit durch hängende Anordnung der Messtechnik

Kurzbeschreibung

Messautomat zur 100%-Kontrolle

Messaufgabe

 Messung von Durchmessern, Längen, Formtoleranzen (Ebenheiten), Richtungstoleranzen (Parallelitäten, Rechtwinkligkeiten), Ortstoleranzen (Symmetrien, Koaxialitäten), Lauftoleranzen (Rundläufe, Planläufe)

Methode

- taktil
- statisch sowie dynamisch

- Taktzeit: ca. 55 s.
- Be-/Entladung: mittels eigenem Handling vom kundenseitigen Förderband
- · Kalibrierung: manuell oder automatisiert
- Umrüstung: manuell oder automatisiert
- · Steuerung: SPS-Steuerung
- · Ausschleusung der n.i.O-Werkstücke

Messautomat für Ausgleichsgehäuse - Flansch

Kurzbeschreibung

Messautomat zur 100%-Kontrolle

Messaufgabe

 Messung von Durchmessern, Längen, Richtungstoleranzen (Parallelitäten), Formtoleranzen (Ebenheiten), Ortstoleranzen (Symmetrien, Koaxialitäten), Lauftoleranzen (Planläufe, Rundläufe)

Methode

- taktil
- statisch und dynamisch

- Taktzeit: ca. 25 s
- Be-/Entladung: mittels eigenem Handling vom kundenseitigem Förderband
- Kalibrierung: manuell
- Umrüstung: umrüstfrei für zwei Typen
- · Steuerung: SPS-Steuerung
- Ausschleusung der n.i.O-Werkstücke über Rutsche

Kurzbeschreibung

Messautomat zur 100%-Kontrolle

Messaufgabe

Messung von Lauftoleranzen (Planläufe in zwei Spuren)

Methode

- taktil
- · dynamisch

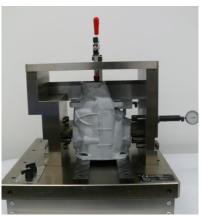
- Be-/Entladung: mit kundenseitigem Handling
- Kalibrierung: automatisch
- Umrüstung: umrüstfrei für die gleiche Werkstückfamilie, bei Wechsel der Werkstückfamilie manuell umrüstbar ohne Tastereinstellung, in wenigen Minuten
- · Steuerung: Fremdsteuerung

Messgeräte und Lehren für Hinterachsgehäuse

Kurzbeschreibung

Messgeräte und Abstecklehren zur Stichprobenkontrolle

Messaufgabe


• Messung bzw. Lehren von Längen, Ortstoleranzen (Positionen)

Methode

- taktil
- · statisch
- lehren

- · Umrüstung: ohne Wechselteile
- Mixbetrieb für 9 unterschiedliche Werkstücktypen

Mess- und Absteckvorrichtung für Hinterachsgehäuse (Alu)

Kurzbeschreibung

Messeinrichtung zur Stichprobenkontrolle

Messaufgabe

- Messung von Abständen zur Gehäusemitte, Höhen
- Lehren von Bohrungsdurchmessern und –positionen

Methode

- taktil
- statisch

Toleranzen

± 0,05 mm

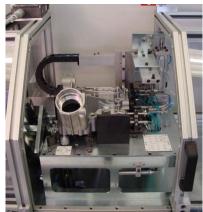
- Be-/Entladung: manuell
- Kalibrierung: manuell
- Umrüstung: umrüstfrei

Messeinrichtung für Hinterachsgehäuse

Kurzbeschreibung

Messeinrichtung zur Stichprobenkontrolle

Messaufgabe


 Messung von Durchmessern, Längen, Formtoleranzen (Ebenheiten), Ortstoleranzen (Positionen)

Methode

- taktil
- statisch

- Be-/Entladung: manuell
- Steuerung: PC-Steuerung
- · Abhebung der Messtaster

Messeinrichtung für Hinterachsgehäuse

Kurzbeschreibung

 Messeinrichtung zur 100%-Kontrolle bzw. Stichprobenkontrolle und Klassierung

Messaufgabe

 Messung von Durchmessern, Längen, Richtungstoleranzen (Parallelitäten, Rechtwinkligkeiten), Ortstoleranzen (Positionen, Symmetrien, Konzentrizitäten, Koaxialitäten)

Methode

- taktil
- · statisch

- Be-/Entladung: manuell
- Kalibrierung: manuell

FERTIGUNGSMESSTECHNIK FÜR DIE BESTEN

Messgerät für Hinterachsgehäuse

Kurzbeschreibung

Messgerät zur Stichprobenkontrolle

Messaufgabe

 Messung von Durchmessern, Längen, Ortstoleranzen (Positionen), Durchgang Ölbohrung

Methode

- · taktil sowie berührungslos, optisch
- statisch

- Be-/Entladung: manuell
- Kalibrierung: manuell
- Steuerung: PC-Steuerung

Messautomat für Hinterachsgehäuse

Kurzbeschreibung

Messautomat zur 100%-Kontrolle und Klassierung

Messaufgabe

 Messung von Durchmessern, Längen, Richtungstoleranzen (Parallelitäten, Rechtwinkligkeiten), Ortstoleranzen (Positionen, Symmetrien, Konzentrizitäten, Koaxialitäten)

Methode

- taktil
- statisch

- · Be-/Entladung: mit kundenseitigem Handling
- Kalibrierung automatisch
- · Steuerung: SPS-Steuerung

Messautomat für Hinterachsgehäuse

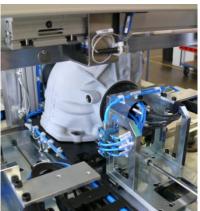
Kurzbeschreibung

Messautomat zur 100%-Kontrolle

Messaufgabe

 Messung von Durchmesser, Formtoleranzen (Ebenheiten), Richtungstoleranzen (Rechtwinkligkeit), Hypoidversatz und Symmetrieversatz der Achsen

Methode


- taktil
- statisch

Toleranzen

- 25 µm im Achsversatz
- 19 µm in Bohrungen der Lagersitze

- Be-/Entladung: mit kundenseitigem Handling
- Kalibrierung: automatisch
- Umrüstung: umrüstfrei für 2 Typen
- Steuerung: Fremdsteuerung
- · Werkstückmarkierung mittels Videojet Tintensystem
- Werkstückrückverfolgbarkeit

3339005/he

Messautomat für Hinterachsgehäuse

Kurzbeschreibung

Messautomat zur 100%-Kontrolle

Messaufgabe

 Messung von Durchmesser, Formtoleranzen (Ebenheiten), Richtungstoleranzen (Rechtwinkligkeit), Hypoidversatz und Symmetrieversatz der Achsen

Methode

- taktil
- statisch

Toleranzen

- 25 µm im Achsversatz
- 19 µm in Bohrungen der Lagersitze

- Taktzeit: < 35 s
- Be/Entladung: manuell
- Kalibrierung: automatisch
- Umrüstung: umrüstfrei für 2 Typen
- Werkstückmarkierung mittels VideojetTintensystem
- Werkstückrückverfolgbarkeit

3363921/he

Messeinrichtung für Gehäuse Innenzahnradpumpe

Kurzbeschreibung

· Messeinrichtung zur Stichprobenkontrolle

Messaufgabe

- Messung von Durchmessern, Längen, Ortstoleranzen (Positionen), Temperatur/Temperaturkompensation (OP10)
- Messung von Durchmessern, Längen, Formtoleranzen (Zylinderform, Ebenheiten), Lauftoleranzen (Rundläufe, Planläufe), Temperatur/Temperaturkompensation (OP20)

Methode

- taktil
- statisch (OP10) / statisch und dynamisch (OP20)

Toleranzen

 Ø-Toleranz = H7, Zylinderform = 5 μm, Lauftoleranzen = 10 μm

- Be-/Entladung: manuell
- Kalibrierung: manuell
- Steuerung: PC-Steuerung (Messrechner und E/A-Module)

Messautomat für Elektro-Antrieb

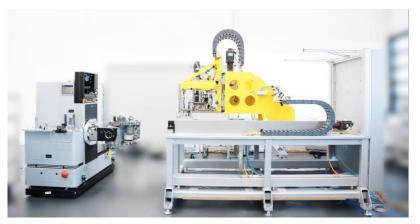
Kurzbeschreibung

Messautomat zur 100%-Kontrolle

Messaufgabe

Messung von Abstand

Methode


- taktil
- statisch sowie dynamisch

Toleranzen

Klassenbreite 10 µm

Besonderheiten

- Taktzeit: ≤ 40 s
- Kalibrierung: automatisch
- Umrüstung: automatisch
- Steuerung: SPS-Steuerung
- Werkstückzufuhr mittels Fahrerlosem Transportfahrzeug (FTF)
- Schutzeinrichtung / Zugangsabsicherung mittels Muting-System

3366080/eis

Messautomat für Scheibenmagazin & Flächendichtung

Kurzbeschreibung

Messautomat zur 100%-Kontrolle und Klassierung

Messaufgabe

· Messung von Abstand, Dicke

Methode

- taktil
- statisch

Toleranzen

Klassenbreite 10 µm

- · Be/Entladung: manuell
- Kalibrierung: manuell
- · Umrüstung: umrüstfrei
- "Pick-by-Light" Scheibenmagazin nach FIFO
- · Modularer Aufbau der Scheibenmagazine
- · Gegenmesseinrichtung
- Messeinrichtung für Flächendichtung

Messgerät für Elektro-Antrieb

Kurzbeschreibung

• Messgerät zur Gegenkontrolle

Messaufgabe

Messung von Abstand

Methode

- taktil
- statisch sowie dynamisch

Toleranzen

Abstand 20 µm

Besonderheiten

- Be/Entladung: manuell
- Antrieb: manuell
- Kalibrierung: manuell
- Umrüstung: manuell für 2 Werkstücktypen
- · Gewicht: Vorlast auf Lagereinheit

3366080/eis

Messautomat für Getriebegehäuse

Kurzbeschreibung

Messautomat zur 100%-Kontrolle

Messaufgabe

 Messung von Abstand zur Trennebene (Getriebe- und Kupplungsgehäuse)

Methode

- taktil
- statisch sowie dynamisch (unter Vorlast 245N)

- Taktzeit: 25 s
- Kalibrierung: automatisch mit integrierter Einstellmeisterzuführung (MIN- und MAX)
- · Messmittelfähigkeit auf Klassenbreite

Messgeräte und Lehren für Getriebegehäuse

Kurzbeschreibung

· Messgeräte und Lehren zur Stichprobenkontrolle

Messaufgabe

 Messung bzw. Lehren von Durchmessern, Längen, Gewinde, Temperaturkompensation, Nuteinstich

Methode

- taktil
- statisch

Toleranzen

für Durchmesser z.B. Ø 50n6

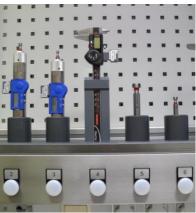
- Umrüstung: manuell
- Messplatz f
 ür 2 Werkst
 ücktypen ausgelegt
- · Kombi-Messkopf für Ø-Nuteinstich und Abstand
- Kompaktmesskopf auf separatem Beistelltisch

Messeinrichtung für Getriebegehäuse

Kurzbeschreibung

· Messeinrichtung zur Stichprobenkontrolle

Messaufgabe


 Messung von Bohrungsdurchmesser, Gewinde / Gewindetiefen, Längen- / Tiefenmaße

Methode

- taktil
- statisch

- · Kalibrierung: manuell bzw. nicht notwendig
- Umrüstung: umrüstfrei für 5 verschiedene Werkstücktypen
- "Pick-to-Light"-Bedienerführung für ca. 25 Messmittel
- Werkstücktyperkennung mittels Handscanner (RFID-Chips)
- · Kabellose Handmessmittel (Datenübertragung per Funk)

Messautomat für Doppelkupplungsgetriebegehäuse

Kurzbeschreibung

Messautomat Postprozess

Messaufgabe

Messung von Durchmessern, Längen, Ortstoleranzen (Koaxialitäten)

Methode

- taktil
- · statisch

Toleranzen

• Ø-Toleranz = 12 μm; Koaxialitäten = 40 μm

- · Be-/Entladung: mit integriertem Handling
- Kalibrierung: automatisch
- Werkstücktyperkennung
- Werkstückrückverfolgbarkeit
- · Ausschleusung der n.i.O-Werkstücke

Messeinrichtung für Doppelkupplung

Kurzbeschreibung

Messeinrichtung zur Stichprobenkontrolle

Messaufgabe

 Messung von Durchmessern, Längen, Richtungstoleranzen (Parallelitäten, Rechtwinkligkeiten), Ortstoleranzen (Symmetrien, Konzentrizitäten, Koaxialitäten), Lauftoleranzen (Rundläufe, Planläufe), Temperatur/Temperaturkompensation

Methode

- taktil
- statisch sowie dynamisch

- Taktzeit: 20 s
- Schnelles Adaptionskonzept bei Fertigungserweiterung

Messautomat für Kupplungsglocke

Kurzbeschreibung

• Messautomat zur 100%-Kontrolle (Inline)

Messaufgabe

· Messung von Durchmessern, Längen, Achsabstände

Methode

- taktil
- · statisch

Toleranzen

• ± 10 µm

- Taktzeit: ca. 15 s
- Be-/Entladung: mit kundenseitigem Roboterarm
- Kalibrierung: automatisch
- · Steuerung: Fremdsteuerung
- Temperaturkompensation

Messautomat für Synchronringe

Kurzbeschreibung

Messautomat zur 100%-Kontrolle

Messaufgabe

Messung von Längen (Kegeleindringtiefe)

Methode

- taktil
- · statisch

- · Be-/Entladung: mit integriertem Handling
- Kalibrierung: automatisch
- · Ausschleusung der n.i.O-Werkstücke
- Werkstückspeicher zur Entnahme für SPC-Messung

Zweikugelmaßmessgerät für Verzahnungen

Kurzbeschreibung

Messgerät zur 100%-Kontrolle bzw. zur Stichprobenkontrolle

Messaufgabe

 Messung von diametrales Zweikugelmaß für Innen- und Außenverzahnung

Methode

- taktil
- · statisch

Besonderheiten

- Be-/Entladung: manuell
- manuelles Verfahren in unterschiedliche Messpositionen
- · Auslesegerät oder Messrechner anschließbar
- Umrüstung: manuell, in < 5 min, ohne Tastereinstellung
- Messbereiche:

 $\begin{array}{ll} \text{Innendurchmesser} & 35-120 \text{ mm} \\ \text{Außendurchmesser} & 30-160 \text{ mm} \end{array}$

Messautomat für Tellerrad

Kurzbeschreibung

Messautomat Postprozess

Messaufgabe

· Messung von Durchmessern

Methode

- taktil
- statisch

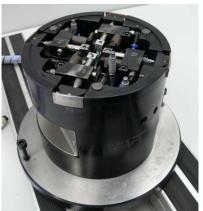
- Be-/Entladung: mit kundenseitigem Handling
- Umrüstung: umrüstfrei
- · zentrierende Werkstückaufnahme
- Messbereich: Durchmesser von 110 mm bis 145 mm
- Taktzeit: < 10 s

Messautomat für Tellerrad

Kurzbeschreibung

Messautomat Postprozess

Messaufgabe


· Messung von Durchmessern, Längen

Methode

- taktil
- · statisch

- Taktzeit: < 60 s
- Kalibrierung: automatisch mit Einstellmeisterzuführung
- Teilespezifische Wechselmessköpfe
- Innendurchmesser wird im Verzahnungsbereich gemessen

Messautomat für Tellerrad und Ritzel

Kurzbeschreibung

Messautomat zur 100%-Kontrolle

Messaufgabe

Messung von Verzahnspiel zwischen Tellerrad und Ritzel

Methode

dynamisch

- · Be-/Entladung: mit integriertem Handling
- · Kalibrierung: automatisch
- Aufnahme der Zahnflankenkennlinie zur Verzahnspielmessung der kompletten Verzahnung

Messeinrichtung für Planetenträger

Kurzbeschreibung

· Messeinrichtung zur Stichprobenkontrolle

Messaufgabe

 Messung von Durchmessern, Längen, Formtoleranzen (Ebenheiten), Richtungstoleranzen (Rechtwinkligkeiten), Ortstoleranzen (Symmetrien)

Methode

- taktil
- statisch

- Be-/Entladung: manuell
- Kalibrierung: manuell
- · Werkstückmarkierung mittels Nadelpräger

Messgerät für Hohlrad (Planetengetriebe)

Kurzbeschreibung

• Messgerät zur 100%-Kontrolle

Messaufgabe

Messung von diametralem Zweikugelmaß; teilweise in 2 Ebenen

Methode

- taktil
- · statisch

Toleranzen

• MdK = 8 μm

- · Taktzeit: 10-12 s mit Handling
- Kalibrierung manuell
- viele Werkstückvarianten möglich bei Einsatz von nur wenigen Wechselsätzen
- Umrüsten manuell in < 5 min
- mit Temperaturkompensation (Handfühler)

Messplatz für Planetenräder -Rohlinge

Kurzbeschreibung

Messplatz zur Stichprobenkontrolle

Messaufgabe

· Messung von Durchmessern, Abständen, Lauftoleranzen (Planlauf)

Methode

- taktil
- dynamisch

Toleranzen

Ø-Toleranz 11 µm

- Taktzeit: <15 s
- · Be-/Entladung: manuell
- Kalibrierung: manuell
- Umrüstung: manuell ohne Tastereinstellung in <5 Min.
- Steuerung: PC-Steuerung (Messrechner)
- Gleichzeitige Messung von Planlauf rechts und links zur Mittenachse während einer Umdrehung

Messautomat für Planetenräder

Kurzbeschreibung

Messautomat Postprozess

Messaufgabe

 Messung von Durchmessern, Abständen, Rundheit und Zylinderform (jeweils nach DIN-ISO)

Methode

- taktil
- dynamisch

Toleranzen

Rundheit 4 µm

- Taktzeit: 30 s
- Be-/Entladung: mit kundenseitigem Handling
- · Kalibrierung: automatisch
- Umrüstung: manuell, ohne Tastereinstellung, in ca. 10 Minuten
- Steuerung: Fremdsteuerung
- Erkennung von Schleif- und Oberflächenfehlern durch Abscannen des Werkstückes in sieben Messspuren

Messautomat für Schaltgruppe

Kurzbeschreibung

Messautomat zur 100%-Kontrolle

Messaufgabe

 Messung von Winkel, Schaltwege, Funktionsprüfung (alle Schaltstellungen messen)

Methode

taktil

- Taktzeit: 60 s
- Be/Entladung: manuell
- · Werkstückmarkierung mittels Nadelpräger
- · Ausgabe von n.i.O-Protokollen über Label-Drucker

Messautomat für Schaltschiene mit Gabel

Kurzbeschreibung

Messautomat zur 100%-Kontrolle

Messaufgabe

 Messung von Durchmessern, Längen, Bewegungs- und Spielmessung

Methode

- taktil
- · statisch

Besonderheiten

- Taktzeit: 25 s
- Be-/Entladung: manuell oder mit kundenseitigem Handling
- Umrüstung: automatisch für 2 Werkstücktypen
- Steuerung: SPS-Steuerung
- · Werkstückmarkierung mittels Nadelpräger
- Laserdrucker zur Ausgabe der Messergebnisse für den Einrichtbetrieb
- vier ähnlich aufgebaute Messautomaten jeweils einen für Gang 1/2, Gang 3/4, Gang 5/6 und Rückwärtsgang

3332636/he

Messautomat für Schaltschiene mit Gabel

Kurzbeschreibung

Messautomat zur 100%-Kontrolle

Messaufgabe

 Messung von Durchmessern, Längen, Richtungstoleranzen (Rechtwinkligkeiten), Ortstoleranzen (Positionen, Symmetrien)

Methode

- taktil
- · statisch

- Taktzeit: 20 s
- Be-/Entladung: manuell oder mit kundenseitigem Handling
- Steuerung: SPS-Steuerung
- · Werkstückmarkierung mittels Farbpunkt
- DataMatrix-Code-Erfassung vor der Messung
- vier ähnlich aufgebaute Messautomaten jeweils einen für Gang 1/3, Gang 2/4, Gang 5/7 und Gang 6/Rückwärtsgang

Messautomat für Festscheibe

Kurzbeschreibung

Messautomat zur 100%-Kontrolle

Messaufgabe

Messung von Durchmessern, Längen, Ortstoleranzen (Koaxialitäten), Lauftoleranzen (Rundläufe, Planläufe), Temperaturkompensation

Methode

- taktil
- dynamisch

Toleranzen

• Ø-Toleranz < 8 µm

- Be-/Entladung: manuell
- Umrüstung: automatisch
- nachträgliche Erweiterung möglich: Be/Entladung automatisch, Schnittstelle zu Bearbeitungsmaschine

Messeinrichtung für Festscheibe

Kurzbeschreibung

· Messeinrichtung zur Stichprobenkontrolle

Messaufgabe

· Messung von Durchmessern, Längen

Methode

- taktil
- · statisch

Toleranzen

• Durchmesser Innenbohrung < 10 μm

- Be-/Entladung: manuell
- Kalibrierung: manuell
- · Zustellbewegung: manuell, kein Zweihandstart erforderlich

Messautomat für Getriebeplatte

Kurzbeschreibung

Messautomat zur 100%-Kontrolle

Messaufgabe

 Messung von Durchmessern, Längen, Formtoleranzen (Ebenheiten), Richtungstoleranzen (Parallelitäten, Rechtwinkligkeiten), Ortstoleranzen (Positionen)

Methode

- taktil
- statisch

- · Be-/Entladung: mit integriertem Handling
- Kalibrierung: automatisch
- Umrüstung: manuell
- · Chargenbetrieb für 3 unterschiedliche Werkstücktypen

Messeinrichtung für Getriebeplatte

Kurzbeschreibung

· Messeinrichtung zur Stichprobenkontrolle

Messaufgabe

 Messung von Durchmessern, Längen, Formtoleranzen (Ebenheiten, Rundheiten) Richtungstoleranzen (Parallelitäten, Rechtwinkligkeiten)

Methode

- taktil
- · statisch

- Be-/Entladung: manuell
- · Kalibrierung: manuell
- Steuerung: SPS-Steuerung des nebenstehenden Messautomaten

Mess- und Montageautomat für Ausgleichsgetriebewelle

Kurzbeschreibung

Mess- und Montageautomat zur 100%-Messung

Messaufgabe

Messung von Scheibendicke für Verzahnspiel, Verzahnspielmessung

Methode

- taktil
- statisch sowie dynamisch

- · Be-/Entladung: mit integriertem Handling
- Kalibrierung: automatisch
- · Ausschleusung der n.i.O-Werkstücke
- · automatisches Scheibenmagazin

Messeinrichtung für Schrägrad

Kurzbeschreibung

· Messeinrichtung zur Stichprobenkontrolle

Messaufgabe

 Messung von Längen, Positionen, Richtungstoleranzen (Parallelitäten)


Methode

- taktil
- · statisch

<u>Besonderheiten</u>

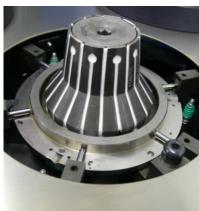
- Be-/Entladung: manuell
- Kalibrierung: manuell ohne Tastereinstellung

Messeinrichtung für Kupplungskörper

Kurzbeschreibung

· Messeinrichtung zur Stichprobenkontrolle

Messaufgabe


 Messung von Längen, Richtungstoleranzen (Parallelitäten), Ortstoleranzen (Positionen), Lauftoleranzen (Planläufe)

Methode

- taktil
- · statisch

- Be-/Entladung: manuell
- · Kalibrierung: manuell ohne Tastereinstellung

Messautomat für Leitrad OP20

Kurzbeschreibung

Messautomat zur 100%-Kontrolle

Messaufgabe

· Messung von Durchmessern, Höhen

Methode

- taktil
- statisch

Toleranzen

- Ø-Toleranz +0,025 mm
- · Höhentoleranz -0,100 mm

- Taktzeit: < 26 s
- · Be/Entladung: mit integriertem Handling
- Kalibrierung: automatisch
- Umrüstung: manuell, mit Wechsel des Auflagetellers
- · Steuerung: Fremdsteuerung
- · Ausschleusung der n.i.O.-Werkstücke

Mess- und Montageautomat für Leitrad OP10

Kurzbeschreibung

Messautomat zur 100%-Kontrolle

Messaufgabe

· Messung von Durchmessern, Parallelitäten

Methode

- taktil
- statisch

Toleranzen

- Ø-Toleranz 0.04 mm
- Parallelität 0.08 mm

- Taktzeit: < 26 s
- · Be/Entladung: mit integriertem Handling
- Kalibrierung: automatisch
- · Umrüstung: mit Wechsel Pressenstempel
- · Steuerung: eigene Steuerung Siemens
- · Ausschleusung der n.i.O-Werkstücke
- Fügestation für Leitrad mit 200 kN

Absteckautomat für Steckverzahnung von Sonnenrad-Wellen

Kurzbeschreibung

Prüfautomat zur 100%-Kontrolle

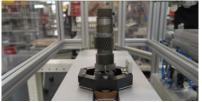
Messaufgabe

Prüfen/Lehren von Steckverzahnungen

Methode

- taktil
- · statisch

Toleranzen


Verzahnungstoleranz + Formtoleranz

Besonderheiten

- Taktzeit: < 18 s
- Be/Entladung: mit integriertem Handling
- Ausschleusung der n.i.O-Werkstücke
- Kraft-/Wegüberwachung
- Optional Temperaturmessung (Auslegung Verzahnungsring auf Soll Werkstücktemperatur)
- · Ablehrring auf Gesamtlänge der Verzahnung
- · Ablehrfunktion über Gesamtlänge der Verzahnung ausgelegt

3356547/he

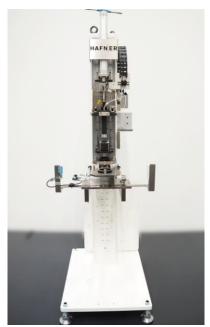
Messautomat für Zahnrad

Kurzbeschreibung

Messautomat Postprozess

Messaufgabe

• Messung von Durchmesser, sequenzielle Ebenen


Methode

- taktil
- statisch

Toleranzen

Ø-Toleranz ± 5 μm

- Taktzeit: 5-7 s (1-2 s / Ebene)
- Be/Entladung: mit kundenseitigem Handling
- Kalibrierung: automatisch (integriert mit Min-Max-Abgleich)
- Umrüstung: manuell (für Wechselteilspektrum / Teiletyp-Ø)
- · Steuerung: Fremdsteuerung

Messautomat für Zahnrad

Kurzbeschreibung

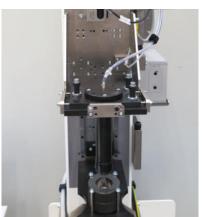
Messautomat Postprozess

Messaufgabe

- · Messung von Durchmesser,
- Besonderheiten: Temperatur/Temperaturkompensation

Methode

- Düsenmessdorn (2x2Messpunkte) mit Schnellwechselflansch
- Statisch
- Mehrere Messebenen flexibel anzufahren


Toleranzen

Ø-Toleranz ± 5 µm

Besonderheiten

- Taktzeit: 5-7 s
- · Be/Entladung: automatisch, mit kundenseitigem Handling
- Kalibrierung: automatisch (Min, Max, Mittel flexibel)
- Umrüstung: manuell
- Steuerung: SPS-Steuerung, über kundenseitige PLC Steuerung

3363026/he

Messautomat für Zahnrad

Kurzbeschreibung

Messautomat Postprozess

Messaufgabe

· Messung von Durchmessern

Methode

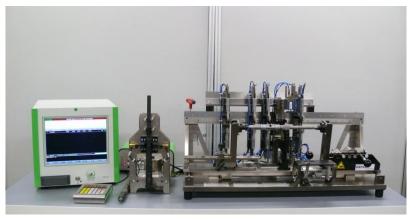
- taktil
- statisch

Toleranzen

Ø-Toleranz ± 8 μm

- Taktzeit: < 10 s
- Be/Entladung: mit kundenseitigem Handling
- Kalibrierung: automatisch
- Umrüstung: umrüstfrei
- · Steuerung: Fremdsteuerung

Messeinrichtung für Schalt- und Wählstangen


Kurzbeschreibung

Messeinrichtung zur 100%-Kontrolle

Messaufgabe

- Messung von Durchmessern, diametrales Zweikugelmaß, Symmetrie Methode
- taktil
- · statisch

- Be-/Entladung: manuell
- Kalibrierung: manuell
- Umrüstung: manuell, ohne Tastereinstellung in wenigen Minuten
- Steuerung: PC-Steuerung
- Verketteter Messablauf f
 ür beide Messger
 äte (Symmetrie und Durchmesser)
- · Datenschnittstelle zu kundenseitigem Laserbeschrifter

